Computational thinking needs to be an integral part of modern education—and today I’m excited to be able to launch another contribution to this goal: Wolfram|Alpha Open Code.

Every day, millions of students around the world use Wolfram|Alpha to compute answers. With Wolfram|Alpha Open Code they’ll now not just be able to get answers, but also be able to get code that lets them explore further and immediately apply computational thinking. Continue reading

This is an edited version of a short talk I gave last weekend at The Nantucket Project—a fascinatingly eclectic event held on an island that I happen to have been visiting every summer for the past dozen years.

Lots of things have happened in the world in the past 100 years. But I think in the long view of history one thing will end up standing out among all others: this has been the century when the idea of computation emerged.

We’ve seen all sorts of things “get computerized” over the last few decades—and by now a large fraction of people in the world have at least some form of computational device. But I think we’re still only at the very beginning of absorbing the implications of the idea of computation. And what I want to do here today is to talk about some things that are happening, and that I think are going to happen, as a result of the idea of computation.

I’ve been working on this stuff since I was teenager—which is now about a third of a century. And I think I’ve been steadily understanding more and more.

Our computational knowledge engine, Wolfram|Alpha, which was launched on the web about three years ago now, is one of the latest fruits of this understanding. Continue reading

Note added: Since this blog was written, Facebook has modified their API to make much less information available about Facebook friends. While I think adding privacy controls is a good idea, what Facebook has done reduces the richness of the results that Wolfram|Alpha Personal Analytics can give for Facebook users.

After I wrote about doing personal analytics with data I’ve collected about myself, many people asked how they could do similar things themselves.

Now of course most people haven’t been doing the kind of data collecting that I’ve been doing for the past couple of decades. But these days a lot of people do have a rich source of data about themselves: their Facebook histories.

And today I’m excited to announce that we’ve developed a first round of capabilities in Wolfram|Alpha to let anyone do personal analytics with Facebook data. Wolfram|Alpha knows about all kinds of knowledge domains; now it can know about you, and apply its powers of analysis to give you all sorts of personal analytics. And this is just the beginning; over the months to come, particularly as we see about how people use this, we’ll be adding more and more capabilities.

It’s pretty straightforward to get your personal analytics report: all you have to do is type “facebook report” into the standard Wolfram|Alpha website.

If you’re doing this for the first time, you’ll be prompted to authenticate the Wolfram Connection app in Facebook, and then sign in to Wolfram|Alpha (yes, it’s free). And as soon as you’ve done that, Wolfram|Alpha will immediately get to work generating a personal analytics report from the data it can get about you through Facebook.

Here’s the beginning of the report I get today when I do this:

Yes, it was my birthday yesterday. And yes, as my children are fond of pointing out, I’m getting quite ancient… Continue reading

Today marks an important milestone for Wolfram|Alpha, and for computational knowledge in general: for the first time, Wolfram|Alpha is now on average giving complete, successful responses to more than 90% of the queries entered on its website (and with “nearby” interpretations included, the fraction is closer to 95%).

I consider this an impressive achievement—the hard-won result of many years of progressively filling out the knowledge and linguistic capabilities of the system.

The picture below shows how the fraction of successful queries (in green) has increased relative to unsuccessful ones (red) since Wolfram|Alpha was launched in 2009. And from the log scale in the right-hand panel, we can see that there’s been a roughly exponential decrease in the failure rate, with a half-life of around 18 months. It seems to be a kind of Moore’s law for computational knowledge: the net effect of innumerable individual engineering achievements and new ideas is to give exponential improvement.

It’s a sad but true fact that most data that’s generated or collected—even with considerable effort—never gets any kind of serious analysis. But in a sense that’s not surprising. Because doing data science has always been hard. And even expert data scientists usually have to spend lots of time wrangling code and data to do any particular analysis.

I myself have been using computers to work with data for more than a third of a century. And over that time my tools and methods have gradually evolved. But this week—with the release of Wolfram|Alpha Pro—something dramatic has happened, that will forever change the way I approach data.

The key idea is automation. The concept in Wolfram|Alpha Pro is that I should just be able to take my data in whatever raw form it arrives, and throw it into Wolfram|Alpha Pro. And then Wolfram|Alpha Pro should automatically do a whole bunch of analysis, and then give me a well-organized report about my data. And if my data isn’t too large, this should all happen in a few seconds.

And what’s amazing to me is that it actually works. I’ve got all kinds of data lying around: measurements, business reports, personal analytics, whatever. And I’ve been feeding it into Wolfram|Alpha Pro. And Wolfram|Alpha Pro has been showing me visualizations and coming up with analyses that tell me all kinds of useful things about the data.

Today I’m excited to be able to announce the launch of Wolfram|Alpha Pro—the biggest single step in the development of Wolfram|Alpha since its original introduction.

Over the two and a half years since we first launched, Wolfram|Alpha has been growing rapidly in content and capabilities. But today’s introduction of Wolfram|Alpha Pro in effect adds a whole new model for interacting with Wolfram|Alpha—and brings all sorts of fundamentally new and remarkable capabilities.

Starting today, everyone has access to Wolfram|Alpha Pro at wolframalpha.com. Unlike the “tourist” version of Wolfram|Alpha, though, you have to log in, and, yes, to get full capabilities there’s a subscription ($4.99/month, or $2.99/month for students). (Right now, you can try it for free with a trial subscription.)

Things with Wolfram|Alpha are going well. Really well. So well that I’m now incredibly keen to scale them up dramatically.

When I started the Wolfram|Alpha project, I was not even sure anything like it would be possible. But over the last two years we’ve proved that, yes, with the tower of technology we’ve created, one can in fact take large swaths of knowledge, make them computable, and deliver them for everyone to use.

From the outside, it’s easy to see that there’s been steady growth in the domains of knowledge that Wolfram|Alpha covers. And over the next few months there’ll be some big additions, notably in everyday and consumer areas. But to me what’s most dramatic is what’s happened on the inside. Because what we’ve done is to build a giant system of technology and management processes that allows us systematically to make any area of knowledge computable.

The catch is that it always takes effort. We rely on a huge tower of automation. But in every new area we tackle there are new issues, new opportunities—and new ways that resources and human effort have to be used.

I’m very pleased with how broad and deep the coverage we have already achieved is. But we have an immense to-do list, assembled not least from all the feedback we’ve received from users of Wolfram|Alpha. And the good news is that at this point it’s a straight shot: given enough effort, we can complete the to-do list. We have all the systems we need to scale the knowledge in Wolfram|Alpha up all the way. Continue reading

Two weeks ago we made a major announcement: building on technology that we’ve been developing for more than 20 years, we released Computable Document Format (CDF). I think CDF is going to have a big effect on the way all sorts of things can be communicated. Because for the first time it makes it practical to include live computation as a routine part of a document.

There are many important applications of CDF that we’ll no doubt be seeing over the months and years to come. But today I’m pleased to announce an experimental one from us: Wolfram|Alpha with CDF.

Starting today, as soon as you have the free CDF plugin installed (or if you have Mathematica 8 on your system) you can go to the top right-hand corner of the Wolfram|Alpha website, and set CDF on, with the result that Wolfram|Alpha will generate not just a static web page, but instead full CDF output—that you can directly interact and compute with. Continue reading

To mark the second anniversary of the launch of Wolfram|Alpha, I did an interactive webcast:

Here’s a transcript of my introduction:

[Note: here is what I wrote for Wolfram|Alpha's first anniversary a year ago.]

So, as of today, Wolfram|Alpha has officially been out in the wild for two years.

And I’m happy to say, it’s doing really well.

You know, I’d been thinking about building Wolfram|Alpha for more than 30 years.

And I’ve been working to build the stack of ideas and technology to make it possible for nearly that long.

At the beginning, I was not really sure that Wolfram|Alpha was going to be possible at all.

And I think if I look a year ago from now my main conclusion was that after a year out in the wild, we’d proved that, yes, Wolfram|Alpha was indeed possible.

Well, now that we’re two years out, I think my conclusion is: Wolfram|Alpha is even a lot more important than I thought it was.

This effort to make all our knowledge computable is really something very fundamental, that’s sort of inevitably going to be needed just all over the place.

About a month before Wolfram|Alpha launched, I was on the phone with a group from IBM, talking about our vision for computable knowledge in Wolfram|Alpha. A few weeks later, the group announced that they were going to use what they had done in natural language processing to try to make a system to compete on Jeopardy.

I thought it was a brilliant way to showcase their work—and IBM’s capabilities in general. And now, a year and a half later, IBM has built an impressive level of anticipation for their upcoming Jeopardy television event. Whatever happens (and IBM’s system certainly should be able to win), one thing is clear: what IBM is doing will have an important effect in changing peoples’ expectations for how they might be able to interact with computers.

When Wolfram|Alpha was launched, people at first kept on referring to it as a “new search engine”—because basically keyword search was the only model they had for how they might find information on a large scale. But IBM’s project gives a terrific example of another model: question answering. And when people internalize this model, they’ll be coming a lot closer to realizing what’s possible with what we’re building in Wolfram|Alpha.

So what really is the relation between Wolfram|Alpha and the IBM Jeopardy project?

Wolfram|Alpha is making possible a whole new very interesting and very powerful kind of computing. And with the release today of version 2.0 of the Wolfram|Alpha API, it’s going to be considerably easier for a broad range of software developers to take advantage of it.

I’m happy to say that it seems as if Wolfram|Alpha is pretty useful to humans—for example through the wolframalpha.com website. But it also turns out that Wolfram|Alpha is extremely useful to programs. And in fact, even today, the number of requests coming to Wolfram|Alpha each second from programs often exceeds by some margin all the requests coming directly from humans.

The reason for this popularity is really pretty simple: Wolfram|Alpha completely changes the economics of a lot of programming. You see, these days a remarkable number of programs rely on having some kind of knowledge. And traditionally, the only way to get knowledge into a program was for the programmer to painstakingly put it there.

But with Wolfram|Alpha in the picture, it’s a different story. Because built into Wolfram|Alpha is already a huge amount of computable knowledge. And if a program is connected to Wolfram|Alpha, then it can immediately make use of all that knowledge.

Whether one’s building a website or a mobile app or desktop software or an enterprise application, the point is that one can use Wolfram|Alpha as a “knowledge-based computing” platform—so that having all sorts of computable knowledge becomes effectively free from an engineering point of view.

How does a program communicate with Wolfram|Alpha? It uses the Wolfram|Alpha API. (These days, API is pretty much a term on its own, but it comes from “Application Program Interface”.) Continue reading

Today we’re releasing the first three of a planned series of “course assistant” apps, built using Wolfram|Alpha technology.

The long-term goal is to have an assistant app for every major course, from elementary school to graduate school. And the good news is that Wolfram|Alpha has the breadth and depth of capabilities to make this possible—and not only in traditionally “computational” kinds of courses.

The concept of these apps is to make it as quick and easy as possible to access the particular capabilities of Wolfram|Alpha relevant for specific courses. Each app is organized according to the major curriculum units of a course. Then within each section of the app, there are parts that cover each of the particular types of problems relevant to that unit. Continue reading

I love computer languages. In fact, I’ve spent roughly half my life nurturing one particular very rich computer language: Mathematica.

But do we really need computer languages to tell our computers what to do? Why can’t we just use natural human languages, like English, instead?

If you’d asked me a few years ago, I would have said it was hopeless. That perhaps one could make toy examples, but that ultimately natural language just wouldn’t be up to the task of creating useful programs.

But then along came Wolfram|Alpha. In which we’ve been able to make free-form linguistics work vastly better than I ever thought possible.

But still, in Wolfram|Alpha the input is essentially just set up to request knowledge—and Wolfram|Alpha responds by computing and presenting whatever knowledge is requested. But programming is different. It is not about generating static knowledge, but about generating programs that can take a range of inputs, and dynamically perform operations.

So the first question is: how might we represent these programs?

Years ago I wondered if it would ever be possible to systematically make human knowledge computable. And today, one year after the official launch of Wolfram|Alpha, I think I can say for sure: it is possible.

It takes a stack of technology and ideas that I’ve been assembling for nearly 30 years. And in many ways it’s a profoundly difficult project. But this year has shown that it is possible.

Wolfram|Alpha is of course a very long-term undertaking. But much has been built, the direction is set, and things are moving with accelerating speed.

Over the past year, we’ve roughly doubled the amount that Wolfram|Alpha knows. We’ve doubled the number of domains it handles, and the number of algorithms it can use. And we’ve actually much more than doubled the amount of raw data in it.

Things seem to be scaling better and better. The more we put into Wolfram|Alpha, the easier it becomes to add still more. We’ve honed both our automated and human processes, progressively building on what Wolfram|Alpha already does.

When we launched Wolfram|Alpha a year ago, about 2/3 of all queries generated a response. Now over 90% do.

So, what are some of the things we’ve learned over the past year? Continue reading

So what’s been happening with Wolfram|Alpha this summer? A lot!

At a first glance, the website looks pretty much as it did when it first launched—with the straightforward input field. But inside that simple exterior an incredible amount has happened. Our development organization has been buzzing with activity all summer. In fact, it’s clear from the metrics that the intensity is steadily rising, with things being added at an ever-increasing rate.

Wolfram|Alpha was always planned to be a very long-term project, and paced accordingly. We pushed very hard to get it launched before the summer so that we could spend the “quiet time” of our first summer steadily enhancing it, before more people start using it more intently in the fall.

Two really great things have happened as a result of actually getting Wolfram|Alpha launched. The first is that we’ve discovered that there’s a huge community of people out there who want to help the mission of Wolfram|Alpha. And we’re steadily ramping up our mechanisms for those people to contribute to the project. Continue reading

It’s now a week since we officially launched Wolfram|Alpha into the world.

It’s been a great first week.

Approaching 100 million queries. Lots of compliments.

But for me the most striking thing is how many people want to help Wolfram|Alpha succeed.

Making the world’s knowledge computable is a huge undertaking.

And it’s wonderful to see all the help we’re being offered in doing it.

We’ve worked hard to construct a framework. But to realize the full promise of computable knowledge, we need a lot of input and support. Continue reading

Starting later today, we’ll be launching Wolfram|Alpha (you can see the proceedings on a live webcast).

This is a proud moment for us and for the whole Mathematica community. (We hope the launch goes well!)

Wolfram|Alpha defines a new direction in computing—that would have simply not have been possible without Mathematica, and that in time will add some remarkable new dimensions to Mathematica itself.

In terms of technology, Wolfram|Alpha is a uniquely complex software system, which has been entirely developed and deployed with Mathematica and Mathematica technologies. Continue reading

(This post was originally published on the Wolfram Blog.)

May 14, 2009 marks the 7^{th} anniversary of the publication of A New Kind of Science, and it has been my tradition on these anniversaries to write a short report on the progress of NKS.

It has been fascinating over the past few years to watch the progressive absorption of NKS methods and the NKS paradigm into countless different fields. Sometimes there’s visible mention of NKS, though often there is not.

There has been an inexorable growth in the use of the types of models pioneered in NKS. There has been steadily increasing use of the kinds of computational experiments and investigations introduced in NKS. And the NKS way of thinking about computation and in terms of computation has become steadily more widespread. Continue reading